Blocking the association of HDAC4 with MAP1S accelerates autophagy clearance of mutant Huntingtin

نویسندگان

  • Fei Yue
  • Wenjiao Li
  • Jing Zou
  • Qi Chen
  • Guibin Xu
  • Hai Huang
  • Zhen Xu
  • Sheng Zhang
  • Paola Gallinari
  • Fen Wang
  • Wallace L. McKeehan
  • Leyuan Liu
چکیده

Autophagy controls and executes the turnover of abnormally aggregated proteins. MAP1S interacts with the autophagy marker LC3 and positively regulates autophagy flux. HDAC4 associates with the aggregation-prone mutant huntingtin protein (mHTT) that causes Huntington's disease, and colocalizes with it in cytosolic inclusions. It was suggested HDAC4 interacts with MAP1S in a yeast two-hybrid screening. Here, we found that MAP1S interacts with HDAC4 via a HDAC4-binding domain (HBD). HDAC4 destabilizes MAP1S, suppresses autophagy flux and promotes the accumulation of mHTT aggregates. This occurs by an increase in the deacetylation of the acetylated MAP1S. Either suppression of HDAC4 with siRNA or overexpression of the MAP1S HBD leads to stabilization of MAP1S, activation of autophagy flux and clearance of mHTT aggregates. Therefore, specific interruption of the HDAC4-MAP1S interaction with short peptides or small molecules to enhance autophagy flux may relieve the toxicity of mHTT associated with Huntington's disease and improve symptoms of HD patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Onjisaponin B Derived from Radix Polygalae Enhances Autophagy and Accelerates the Degradation of Mutant α-Synuclein and Huntingtin in PC-12 Cells

Emerging evidence indicates important protective roles being played by autophagy in neurodegenerative disorders through clearance of aggregate-prone or mutant proteins. In the current study, we aimed to identify autophagy inducers from Chinese medicinal herbs as a potential neuroprotective agent that enhances the clearance of mutant huntingtin and α-synuclein in PC-12 cells. Through intensive s...

متن کامل

Defects in MAP1S-mediated autophagy turnover of fibronectin cause renal fibrosis

Excessive deposition of extracellular matrix proteins in renal tissues causes renal fibrosis and renal function failure. Mammalian cells primarily use the autophagy-lysosome system to degrade misfolded/aggregated proteins and dysfunctional organelles. MAP1S is an autophagy activator and promotes the biogenesis and degradation of autophagosomes. Previously, we reported that MAP1S suppresses hepa...

متن کامل

Acetylation Targets Mutant Huntingtin to Autophagosomes for Degradation

Huntington's disease (HD) is an incurable neurodegenerative disease caused by neuronal accumulation of the mutant protein huntingtin. Improving clearance of the mutant protein is expected to prevent cellular dysfunction and neurodegeneration in HD. We report here that such clearance can be achieved by posttranslational modification of the mutant Huntingtin (Htt) by acetylation at lysine residue...

متن کامل

The absence of specific yeast heat-shock proteins leads to abnormal aggregation and compromised autophagic clearance of mutant Huntingtin proteins

The functionality of a protein depends on its correct folding, but newly synthesized proteins are susceptible to aberrant folding and aggregation. Heat shock proteins (HSPs) function as molecular chaperones that aid in protein folding and the degradation of misfolded proteins. Trinucleotide (CAG) repeat expansion in the Huntingtin gene (HTT) results in the expression of misfolded Huntingtin pro...

متن کامل

Feeding schedule and proteolysis regulate autophagic clearance of mutant huntingtin

The expression of mutant huntingtin (mHTT) causes Huntington disease (HD), and lowering its levels is therefore an attractive therapeutic strategy. Here we show that scheduled feeding significantly decreases mHTT protein levels through enhanced autophagy in the CNS of an HD mouse model, while short term fasting is sufficient to observe similar effects in peripheral tissue. Furthermore, preventi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015